163 research outputs found

    Adaptive Fitness Landscape for Replicator Systems: To Maximize or not to Maximize

    Full text link
    Sewall Wright's adaptive landscape metaphor penetrates a significant part of evolutionary thinking. Supplemented with Fisher's fundamental theorem of natural selection and Kimura's maximum principle, it provides a unifying and intuitive representation of the evolutionary process under the influence of natural selection as the hill climbing on the surface of mean population fitness. On the other hand, it is also well known that for many more or less realistic mathematical models this picture is a sever misrepresentation of what actually occurs. Therefore, we are faced with two questions. First, it is important to identify the cases in which adaptive landscape metaphor actually holds exactly in the models, that is, to identify the conditions under which system's dynamics coincides with the process of searching for a (local) fitness maximum. Second, even if the mean fitness is not maximized in the process of evolution, it is still important to understand the structure of the mean fitness manifold and see the implications of this structure on the system's dynamics. Using as a basic model the classical replicator equation, in this note we attempt to answer these two questions and illustrate our results with simple well studied systems.Comment: 13 pages, 4 figure

    Replicator equations and space

    Full text link
    A reaction--diffusion replicator equation is studied. A novel method to apply the principle of global regulation is used to write down the model with explicit spatial structure. Properties of stationary solutions together with their stability are analyzed analytically, and relationships between stability of the rest points of the non-distributed replicator equation and distributed system are shown. A numerical example is given to show that the spatial variable in this particular model promotes the system's permanence.Comment: 24 page

    Scattering theory of superconductive tunneling in quantum junctions

    Full text link
    We present a consistent theory of superconductive tunneling in single-mode junctions within a scattering formulation of Bogoliubov-de Gennes quantum mechanics. Both dc Josephson effect and dc quasiparticle transport in voltage biased junctions are considered. Elastic quasiparticle scattering by the junction determines equilibrium Josephson current. We discuss the origin of Andreev bound states in tunnel junctions and their role in equilibrium Josephson transport. In contrast, quasiparticle tunneling in voltage biased junctions is determined by inelastic scattering. We derive a general expression for inelastic scattering amplitudes and calculate the quasiparticle current at all voltages with emphasis on a discussion of the properties of subgap tunnel current and the nature of subharmonic gap structure.Comment: 47 pages, 9 figures, [preprint,eqsecnum,aps]{revtex
    corecore